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Network Resource Management

* Network Resources
* Communication
* Computation
* Caching (Storage), efc...

* Lecture 1
* Network slicing concept
* Resource allocation with optimization (Network Slicing)

-~ D
e Lecture 2

* Joint Communication, Computation, Caching, and Control in Big Data Multi-access
Edge Computing

* Game Theory Approaches

* Al/ML Based Approaches
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Joint Communication, Computation, Caching, and
Control in Big Data Multi-access Edge Computing

* Introduction
* Joint 4C in Big Data MEC
e Performance Evaluation
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Introduction: Background
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_;( 10T ANALYTICS Insights that empower you to understand leT markets

Total number of active device connections worldwide

Number of global active Connections (installed base) in Bn
354

304

 Global number of connected devices continue to
increase at very rapid pace:
By year 2025, there will be 34.2 B with 21.5B loT —)
devices (smartphones, tablets, laptops)

254

.’_‘. Non-leT

M o1
o
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

les all mobile phones, tablets, BCs, laptops, end fixed line phones. loT includes all consumer and 828 devices connected — see loT break-down for further details
arch 2018

Source: https://iot-analytics.com/state-of-the-iot-update-q1-g2-
2018-number-of-iot-devices-now-7b/

46% CAGR
e Global mobile data traffic. 20N
By year 2022, there will be 77 Exabytes per month %
. . 80
of mobile data traffic — 70 —]
60
. . . 50
Therefore, wireless users’ devices will be e b
anywhere, anytime, and connected to zg
anything 10 . .
o IR
2017 2018 2019 2020 2021 2022
Source: Cisco VNI Mobile, 2019 « Smartphones inc. Phablets (88%, 93%) « M2M (1.8%, 2.2%)

UNIVERSITY

. . . . . = N h 1.3%, = Tabl 4. 2
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 Downloading: Data traffic from data centers to users will be 14.9% of global data center traffic by year 2021

Introduction: Background
* Offloading: Offloading traffic will be 71% of mobile data traffic by year 2022

100%
Data Center Within Data Center o Within Data Center (71.5%)
to user 71.5% g
80% 14 ¢ r: Storage, production and
development data,
authentication
Mobile and
(I)Ifload 60% Edge Data Center
Traffi . to
o Mr:bi;z . Devices Dits Curitar o Data Center to Data Center (13.6%)
Connected £ 13.6% Replic .|L:nf‘ CDN,
Devices interclioud links
20%
o Total East-West traffic will be 85% e Data Center to User (14.¢ ma
o e

=
(Fack-local raffic woukd add anolther sice .
twice e slzw of “Within Data Conter”) .

Source: Cisco Global Cloud Index, 2016-2021
Autonomous car data vs. human data

In 2020, the average autonomous car may process 4,000 gigabytes of data per day, while the
average internet user will process 1.5 gigabytes. That means...

3G 4G 5G

B Mobile Traffic M Offload Traffic

2G

Source: Cisco VNI Mobile, 2019
(https://www.cisco.com/c/en/us/solutions/collateral/service-

provider/visual-networking-index-vni/white-paper-c11-738429.html)
N\
~~

From the edge, there will be a tremendous growth of data
traffic with different scale, distribution, diversity, and velocity
fall into a big data framework

@ KYUNG HEE 1 autonomous car = 2,666 internet users
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Introduction: Motivations and Problem Statement

Multi-access Edge Computing (MEC)

ETSI introduced Multi-access Edge Computing (MEC) as a suitable technology for providing cloud services to the
edges in closed proximity to the users [1]

Challenges:

 However, when each MEC server operates independently, it cannot handle all
computational and big data demands stemming from edge devices.
How significantly reduce data exchange between edge devices and cloud?

* Edge devices offload tasks and corresponding data with varying rates, where
data from multiple edge devices may reach MEC servers too rapidly with a
finite or infinite flow, and needs to be processed immediately.

How to handle such data for delay sensitive and mission critical applications?

* Integration of MEC with a mobile network environments raises a number of
challenges related to the coordination of both MEC server and mobile network
services.

How to formulate a joint communication, computation, and caching for MEC?

High delay
&
a g

[1]. MEC in 5G networks,” ETSI White Paper No. 28, ISBN No. 979-10-92620-22-1,Jun. 2018. (&/
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Joint 4C in Big Data MEC

Fiber link

SICAEEIEIEICEIT
SRR SR

X2

R Y T o B Wireless channel
Virtual resources

Solution: Collaboration space for Big Data MEC [1

We propose joint computing, caching, communication,

. and control (4C) at the edge with MEC server collaboration for Big
((')) N\ Data applications

\ \ J;Eﬁ-\i‘:

Physical resources in

il Cserver |
4 collaboration space ( ) Ir
|@ A~ \ /Gﬁa
MEC server -~ — -
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*{wv KYUNG HEEAnselme Ndikumana, Nguyen H. Tran, Tai Manh Ho, Zhu Han, Walid Saad, Dusit Niyato, Choong Seon Hong , "Joint Communication, Computation, Caching, and @
. UNIVERSITY Control in Big Data Multi-access Edge Computing,” IEEE Transactions on Mobile Computing, Vol.19, Issue 6, pp.1359-1374, Jun. 2020
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Joint 4C in Big Data MEC (continued)
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We introduce overlapping k-mean

End-user k among MEC servers, which is not only

MEC Servern MEC serverm

)
— — —Fiber- — — — “ﬁ “W. channel- ( \ ()

A

MEC server m End-user k

based on distance measurements, but

also based on available resources /

.{,ﬂv KYUNG HEEAnselme Ndikumana, Nguyen H. Tran, Tai Manh Ho, Zhu Han, Walid Saad, Dusit Niyato, Choong Seon Hong , "Joint Communication, Computation, Caching, and @
. UNIVERSITY Control in Big Data Multi-access Edge Computing,” IEEE Transactions on Mobile Computing, Vol.19, Issue 6, pp.1359-1374, Jun. 2020 NETWORKING
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Joint 4C in Big Data MEC (continued)

* We formulate the joint 4C in big data MEC as an optimization problem in [1] that aims at

maximizing bandwidth saving while minimizing delay, subject to the local computation capabilities of
user devices, and MEC resource constraints

* In order to solve the formulated problem, which is non-convex, we propose a proximal upper-bound

problem of the original problem and apply the block successive upper bound minimization (BSUM)
[2] for solving it.

1. Anselme Ndikumana, Nguyen H. Tran, Tai Manh Ho, Zhu Han, Walid Saad, Dusit Niyato, Choong Seon Hong , "Joint Communication,
Computation, Caching, and Control in Big Data Multi-access Edge Computing,” IEEE Transactions on Mobile Computing, Vol.19, Issue 6,
pp-1359-1374, Jun. 2020

2. M. Hong, M. Razaviyayn, Z.-Q. Luo, and J.-S. Pang, “A unified algorithmic framework for block-structured optimization involving big datag,”
IEEE Signal Processing Magazine, vol. 33, no. 1, pp. 57—-77, 25 Dec. 2015

?av KYUNe: HER- Boswarva et al., “Sitefinder mobile phone base station database,” Edinburgh DataShare , the University of Edinburgh, UK, Feb. 2017. (N\/
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Joint 4C Collaborative Big Data MEC

v' In order to satisfy edge devices’ demands, MEC serve
collaborate

v" We proposed collaboration space formation by using

rs located in the same area need to

Overlapping k-Means [1]

v" In each collaboration space, based on available resources, MEC servers can exchange data,

tasks, resource utilization information

minimize

_—- X2

5@@@@@@@ =~ Wireless channel
BB - - -

Virtual resources

7

MEC seYver

\'.

Physical resources in
collaboration space

\
\

\ MEC server

\ \
\

/\

Ve
MEC server //

~
N [ &
N i, 8 . _A/
A .
AN "i na
G A B “‘
\\ ./
=S /
" \\ //
’\( 9 KYUNG HEE ~~_ _-
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VEC server
)/QQQ

N l§ ﬁ,\ t;:-p?"i / [1]. Whang, Joyce Jiyoung, Inderjit S. Dhillon, and David F. Gleich. "Non-exhaustive,
B overlapping k-means." Proceedings of the 2015 SIAM International Conference on Data
Mining. Society for Industrial and Applied Mathematics, 2015.

Average of centroids

:

.
I{MYi) =Y Y lm]-@em))P
i=1 me M T
Base station location

Z e [Me;
{I"(m) — m(-!E 1 A

A \’

Centroids of i

(( . )) \\\ set of all centroids m,

m: Base station
r: Number of collaboration spaces
®(m) : Average of centroids
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Exclusive Clustering Overlapping Clustering

https://doi.org/10.1016/j.eswa.2016.09.025

Algorithm 1. OKM for Collaboration Space (OKM-C5)

1: lnput: M: A set of BSs with their coordinates,
t,,: Maximum number of iterations, ¢ = (;
2: Qutput: { “vf” ) }i—, : Final cluster coverage of BSs;
: Choose r and mltlal clusters with {m"}._, centroid;
4: For each BS m, compute the assignment
A" by assigning bs m to centroid {m'” '}._,. and derive ini-
tial coverage {M'"'}"_,, such that M_" = {m|m{) € AN
5: Initialize t = 0;
6: For each cluster *«1, , cumpute the new centroid,
m'” Y by grouping _;'VI
7 Fnr each BS m and assl‘gnmen’r .A
ment A" 1)

[

', compute new assign-
by assigning bs m to centmld {m{"V}_, and

derive new coverage {M!"V}"_
8: If Equation (1) does not converge or t,,, > t or Z({ _;'VI:;'F:' i) —
T{M™MY_ ) > ¢ set t =t + 1, restart from Step 6. Other-
wise, stop and consider { M, {5 }:_, as the final clusters.

N
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Joint 4C Model for Collaborative Big Data MEC
I I

To offload task and data from edge device to the MEC server, the network will incur a communication cost

I_ ____________________________ -
g @) 3
Scenario (a) x Resource Miss A I
_ X ---‘Wireless Channel (a) :
Offload a task from edge device to the nearest v Resource Hit JRIR\ |
MEC server MEC Server m Edge Deviceﬂ
- I
1. if task T;. from edge device k is offloaded to BS m. |j(,)) (( ))
I = |

0, otherwise. H\ —X2— — _g-ﬁ -Wireless Channel-- (b)

I

I

I

I

A I

—= I

° . I
The spectrum efficiency and instantaneous MEC server e Edge Device k.
data rate: :

I
I

()
— — —Fiber— — — FEATHN\ Wireless Channel-- ICIi

I
Edge Device k|

2
AﬂlegQ(l_l_M):H};E}C?m
o

T

Instantaneous data rate R}’ = x} ay|Bm0i . Yk € K, m € M.,

<&

allocation bandwidth . ______MEeCsererm " _ _ |
e Transmission de|ay for offloading a task Collaboration space for MEC with three typical scenarios
m () \G7*|?: channel gain
k Ty S\ag . . £ :Transmission power
T = s TR € K T, Task
k

s(d}.) :Size of input data =
&Y KYUNG HEE ~ (N/
f.“ UNIVERSITY \‘_
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Joint 4C Model for Collaborative Big Data MEC
I I

To offload task and data from a user to the MEC server, the network will incur a communication cost

e

I

I

* When the nearest MEC server m has insufficient *K Resource Miss A |
S ----WirelessChanneI----g II:

I

I

resources, it forwards a request to another BS n . Resource Hit Ue
1, if an offloaded task T, from edge device k is forwarded from BS m l'

MEC Server m Edge Device k

) )
/' ﬂ— — —EIZII— — —\.ﬁ ereless Channel IbI

\MEC Server n MEC Server m Edge Device ¥

I
I
I
I
I
|
:
Qbe (( )) i
I
I
I
I

M—f _ <

Y to a nearest neighbor BS n,

0, otherwise.

 The offloading delay between BS m and BS n

mMm—1
Yorer. Yp T "s(dr)
T = ekm FI; CYm,ne M
17T

— — —Fiber- — — — \‘ ~Wireless Channel-- (c

* When the resources are not available in the N
) F
whole collaboration space, BS m forwards the }' I*\ Edge Device
request to DC e : , MECServerm
y;:l_IDC L, it T}, is offloaded from BS m to the DC, Collaboration space for MEC with three typical scenarios

0. otherwise. .
’ G'7|%: Channel gain

* The offloading delay between BS m and DC mrn ;I:Ergr(\smti)zsri]zr\jv ?di\;\ver
Dc Worst-case "
m—DC _ ZL»::JLm ffIcﬂ_I s(dy.) ) T; :Task

s(dy) : Size of input data R
KYUNGHEE 'k ODC , ¥m i) :Size of inpu (K_(/
UNIVERSITY ﬂl
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Joint 4C Model for Collaborative Big Data MEC

* Energy consumption of CPU computation: E; = S(dk) P2 kek

. s(di)zg Computation workload
* The execution latency for task: I = onstant parameter(related to CPU H/W)
omputat|on deadline Pi| «—— Total computation capacity

v
* When [, > 7., 5, > P, or E, > E,, edge device can keep the computational task until the resources

become available for local computation via its device. Otherwise, edge goe%/b%%a?lgﬁggg%fffload task to MEC

server -
= {01 if 2 > Py, or Iy > 7k, or|Ey > [Ex«—Available energy in user device k

1, otherwise. Edge device status parameter
Average waiting time

0, if o — 0, and 2 — 1, Ti) Offload

Scenario 2: Computation at MEC Server
Sub-scenario (a) . whem BS m computes offloaded task T},

» Offloaded task to MEC server: s _ i
Y by edge device k | Z k—m

L Dm0 < Pr, Ymoe M.
keKm

0., otherwise.

* Computation allocation: 5 q
KYUNG HEE Phom = Prs=— 0 Tk & Komy & M. )




Joint 4C model for collaborative big data MEC

Computation Model
Scenario 2: Computation at MEC Server

The execution latency: r_ s(dk)ik_ = TE7™ i, Yk € K, m € M.

Prm T

km
Sub-scenario (b) Total executing time of offloaded task

* When 2 > pum or 7, > 71, MEC server m does not have enough computational resources to meet the
computation deadline. Then, it forwards a request to another BS n in collaboration space

T =TE M T L YV € K, and m,n € M.

Sub-scenario (c)

* When the resources are not available in the whole collaboration space, BS m forwards the request to DC
ThmDC = T;f_}m—l—?'ﬂl_}ﬂc—l—fkﬂc, vk € Ky, and m e M

Control for communication and computation at MEC server

 Coordination: The constraints to ensure that task is executed at only one location
(1 — ) + 2y ™ + Z yr Tt + oy Py = 1, (23)
e A

max{yE=", g g PO YnY < 2, Yk € K. (24)

N
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Joint 4C model for collaborative big data MEC
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Caching Model at MEC server

0, otherwise.

. {1, if MEC server m € M caches the data dy,

Total cache capacity at MEC

|
( Z yk—rm + Z Z yﬂ—}m) wﬁlg(dk] < ij

ke k., n#EmMeM ek,
Ym e M.

Control Model for communication, computation, and caching at MEC server

* We propose a distributed optimization control model that coordinates and integrates the communication,

computation, and caching models

* We use a cache rewards that aims to maximize the backhaul bandwidth saving by reducing the data
exchange between MEC servers and remote DC, i.e., increasing the cache hits:

Alleviated backhaul bandwidth: ¥ (| y}[w

Offload(User), offload(MEC), cache

Total delay ©(x, y)

NNNNNNNNN

S

;fe KYUNG HEE

meM Bk,

dp N

=> > s

meM kckl,,

- Request arrival rate

(yk—}m k

(27)

+ Z ym—}n k

neM
e We use total offloading and computation delay that aims to minimize delay

Z Z ].—".Ek IDC‘I‘TkTEE-
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Joint 4C model for collaborative big data MEC

15/33

Problem Formulation and Solution

 We formulate the joint 4C in collaborative big-data
MEC as an optimization problem that jointly minimizes
both bandwidth consumption and latency as follows:

Total delay Alleviated backhaul bandwidth
v
m?y?w

subject to: Communication

—

Z la™ < 1, ¥m e M, (20a)
ke k., C tati
omputation
Z Pyt 2™ < P, Ym € M g (20b)
ke k.,
T VT Y Y T wns(de) < Oy (29)
kek,, n#meM kek, \
(1—af) + 2™ + Z g+ P9 =1 | (294)
ne M
mas =, g R ) < o (29¢)
\ Caching

Coordination

Solution:

Using Block Successive Upper-bound Minimization
(BSUM), we proposed Distributed optimization
control algorithm for 4C in big data MEC

B(z,y,w) = O(x,y)
Objective function Total delay = >3vedbackhaul
. bandwidth
Proximal upper-bound function

T ;'}'ll’(ma Y, “UJ}

Bj(zj. ",y w) = B(x;, &, §, W) + %”(:Fj — )|
The solution is updated by solving:
Oa x £ min T, T w
Offload EH ) L B;( () 40) 4y, (36)
(User) e3€
Offload ,,(t+1) &) L.(t+1) ., (t)
1 S Iﬂ]ﬂ B (y 1y :C ,“UJ ): 37
(MEC) yey (37)
(t+1) ¢ t+1 t1
cache wy; e wr?g}]sz (—w_?,w” x' J,yf ) (38)
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Joint 4C model for collaborative big data MEC
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Proposed Algorithm

Algorithm 3. Distributed Optimization Control Algorithm
(BSUM-based) for 4C in big Data MEC

1: Input: T A vector of demands; B,,, P,,, and C,,: communi-
cation, computational and caching resources;

2: Output: z*, y*, w*, ¢: A vector of cache allocation, p: A vec-
tor of computation allocation, and R: A vector of communi-
cation resources allocation;

3: Each user device k € K chooses the offloading
decision z}";

4: If z}" = 1, user device k € K sends its demand T}, to BS

m € M;

For each T}, received at BS m € M, check RAT update;

Initialize t = 0,¢ > 0;

Find initial feasible points (z'*, ¥, w(");

N

8:
9:
10:

11:

12:
13:

14:
15:

16:

17:

repeat
Choose index set .7;

Let a:( D ¢ min B; (), 2,y w™);
J ;X

Setz'!' =z ,Vk ¢ TJ;
Go to Step 4, find y(Hl , ‘g¢+1} by solving (37) and (38);
t=t+1;
gty
until || % | <e€

J
Generate a binary solution of :nfﬂ), y(Hl) ") and obtain

¢, p, and R by using rounding technlque (39) and solving
B;+£A;

Then calculate B. If B < 1, consider z* = :c( +) Y yfﬂj ,
and w* = w'""") as a solution;

Update RAT, and send RAT update in collaboration space.

RAT : resource allocation|BSUM overview[1]:
table

(a)

citation: 393)

2%
KYUNG HEE

surrogate function of the
o original oljjective

[1]. Hong, Mingyi, et al. "A unified algorithmic framework for block-structured optimization involving big data: With
applications in machine learning and signal processing." IEEE Signal Processing Magazine 33.1 (2016): 57-77 (Google

(b) (c)
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* For forming collaboration spaces, we use the Sitefinder dataset from
Edinburgh DataShare [3]

* We randomly select one MNQO, which has 12,777 BSs, through use of the
Overlapping K-mean Method for Collaboration Space (OKM-CS)
algorithm, where we group these BSs into 1,000 collaborations spaces

Performance Evaluation

* Among 1,000 collaboration spaces, we randomly select one

collaboration space, which has 12 BSs, and we associate each BS with 1
MEC server

1. O. Boswarva et al., “Sitefinder mobile phone base station database,” Edinburgh DataShare , the University of Edinburgh, UK, Feb. 2017.
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Performance Evaluation

Ta-1

1.0 =5 wm&ﬂ‘““"*“*°""""**'~°—°~‘-*'*°' 1.4} —_—
g #
5 0.8 1.2
oo o 1
2 g
£ g
T 08 =10
Ol o
=08 ‘B
£0 @
§ 0.4 E 0.8
° -w- Cydlic E
s 02 — =+ Gauss-Southwell 06
g - «+ Randomized
o -+ - Douglas-Rachford splitting

0.0 Ak 0.4

0.0 0. 1.0 15 2.0 25 Gy GS Ran DRS
o Computation throughput (MIPS) oo
Requiringhigh computational resources

K BSUM selection rules: \

* Cyc Cyclic * BSUM and D-R-S algorithms enable to
* G-S: Gauss Southwell .
decompose our problem into small sub-

* Kein: Ranclomized problems, and address each sub-problem
* D-R-S: Douglas Rachford splitting
separately

- o\ /

£ KYUNG(I;IP]\E%ong Seon Hong, et al. "Joint Communication, Computation, Caching, and Control in Big Data Multi-access Edge Computing." arXiv preprint @
waiversigr Xiv:1803.11512, 2018 (Submitted to IEEE Transactions on Mobile Computing ). ETWORKING
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Game Theory Approaches

 Introduction

 Use Case : Network Slicing: Dynamic Isolation Provisioning and
Energy Efficiency

7. )
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[22]
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* John von Neuman (1903-1957) co-authored, Theory of Games and Economic Behavior, with Oskar
Morgenstern in 1940s, establishing game theory as a field

Introduction: History of Game Theory

* John Nash (1928- ) developed a key concept of game theory (Nash equilibrium) which initiated many
subsequent results and studies

* Since 1970s, game-theoretic methods have come to dominate microeconomic theory and other fields

- . D
Nobel prizes
* Nobel prize in Economic Sciences 1994 awarded to Nash, Harsanyi (Bayesian games) and Selten
(Subgame perfect equilibrium)
* 2005, Auman and Schelling got the Nobel prize for having enhanced our understanding of
cooperation and conflict through game theory
* 2007, Leonid Hurwicz, Eric Maskin and Roger Myerson won Nobel Prize for having laid the
foundations of mechanism design theory )
Zhu Han, Dusit Niyato, Walid Saad, Tamer Basar, Are Hjgrungnes, “Game Theory in Wireless and Communication Networks: (N-\,
LA B

KYUNG HEE Theory, Models, and Applications,” Cambridge University Press, 2011
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ntroduction

( )

Game Theory: Mathematical models and techniques developed in economics to
analyze interactive decision processes, predict the outcomes of interactions,
and identify optimal strategies .

* Game theory techniques were adopted to solve many protocol design issues

(e.g., resource allocation, power control, cooperation enforcement) in wireless
networks

* Difference to control: against other players as well as nature

* Fundamental component of game theory is the notion of a game

* A game is described by a set of rational players, the strategies associated with the players, and the
payoffs for the players. A rational player has his own interest, and therefore, will act by choosing an
available strategy to achieve his interest.

* A player is assumed to be able to evaluate exactly or probabilistically, the outcome or payoff (usually
measured by the utility) of the game which depends not only on his action but also on other players’
actions.

& V KYUNG HEE Game Theory in Wireless and Communication Networks: Theory, Models, and Applications ﬂ((
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Introduction: Matching Game: GS algorithm

2012 Nobel Prize in Economic Science.

j Geeta, Heiki, Irina, Fran

Adam Fran
i Irina, Fran, Heiki, Geeta Q Carl > Adam
23

Bob We reach a stable marriage! Geeta
% Geeta, Fran, Heiki, Irina ﬁ
Carl Heiki

¥ R

< . o iq

Irina, Heiki, Geeta, Fran i .
Yo David > Bob
O DO rav
David Irina

KYUNG HEE Game Theory in Wireless and Communication Networks: Theory, Models, and Applications (&)
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'Introduction: Stackelberg Games (1)

* Hierarchy among the players exists

* The player that imposes its own strategy upon others is called the leader

* The other players who react to the leader's strategy are called followers

Definition 20 In a two-person finite game with Player 1 as the leader, a strat-
eqy 57 € 81 is called a Stackelberg equilibrium strategy for the leader,if

= - M * S 6y
min (S .5) = Max min iS5, 5) = Uy. lk._JI-.-j;_:-]
speRa (s l: 1 } s1E s Ra(s1) |: } L

m

The gquantity uf is the Stackelberg utility of the leader. The same definition
applies for the case where player 2 is the leader by simply swapping the subscripts
1 and 2.

* Every two-person finite game admits a Stackelberg strategy for the leader

* Whenever the follower has a single optimal response for every strategy of
the leader, then the leader can, at the Stackelberg solution, perform at least
as good as at the Nash equilibrium

\\\\\\\\\\

KYUNG HEE Game Theory in Wireless and Communication Networks: Theory, Models, and Applications (N\/



Introduction: Stackelberg Games (2)

26/85

* Stackelberg games are not limited to the single-leader single-follower case

* In a single-leader multi-follower case, the Stackelberg equilibrium is basically
composed of an optimal policy for the leader with respect to a Nash
equilibrium of the followers

* It is often desirable to have a unique Nash equilibrium for the followers game, so as to make the
Stackelberg solution tractable

* Example application: Pricing for Internet Service Providers

* Multi-leader multi-follower Stackelberg games

* At the Stackelberg equilibrium, both leaders and followers are in a Nash equilibrium
(the Nash equilibria are correlated)

* Hard to solve when the followers game has many equilibria

o V KYUNG HEE Game Theory in Wireless and Communication Networks: Theory, Models, and Applications W
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Example: Buyer/Seller Game (Two Level)

27 /85

— Sender (buyer) buying the services from the relays to improve its performance,
such as the transmission rate

e Buyer/Seller (Leader/Follower) Game

— Relays (sellers) selling service, such as power, by setting prices

— Tradeoffs: Price too high, sender buying from others; price too low, profit low;
sender decides to buy whose and how much to spend

— Procedures: Convergence to the optimal equilibrium

— Example: Power Control and Relay Section for Cooperative Transmission

\ & Q. «
\{éﬁ%’ﬁ’,«/

®y KYUNG HEE Game Theory in Wireless and Communication Networks: Theory, Models, and Applications (N
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Use Case : Dynamic Pricing for Resource Allocation
in Wireless Network Virtualization: A Stackelberg
Game Approach

 System Model
e Problem Formulation
e Simulation Results
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System Model

InP
C ¢ oo C

At i

<_‘_ —— “.".—-._.*i ~~~~~~~ .— ;— .._ = >
set Clof C
orthogonal sub-

" | : < s @ ) .

channets Virtualization MIVND 15 isers Formulate the resource allocation problem for the

wireless network virtualization as a hierarchical two
stage Stackelberg game with InP plays the leader
role and MVNOs act as followers.

ﬁ. MVNO 2’s users

- =

?wv KYUNG HEE  Tai Manh Ho, Nguyen H. Tran, S.M Ahsan Kazmi, Choong Seon Hong, "Dynamic Pricing for Resource Allocation in Wireless Network Virtualization: (N)
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Stackelberg Game

Two-stage

e ——

/ Stackelberg Game \

| -’/f'll"llml..lhl'\ﬁ‘-.

required |

| AT
- Stage I: /p/npm}m

Revenue al share Elfl

maximization \ ij/
J
| u a Fﬂﬂ{\E\

Price BW sum-rate |

| f-Eilrr‘IEEl//

Stage II:
MOs Sum Rate

maximization, )

\ \_ Cost minimization /

--'-'-F-

~,
"y

YUN

Ay K Tai Manh Ho, Nguyen H. Tran, S.M Ahsan Kazmi, Choong Seon Hong, "Dynamic Pricing for Resource Allocation in Wireless Network V|rtuaI|zat
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Problem Formulation

* Stage ll: MVYNO model - Followers Game

achievable data rates normalized transmit power |arge-scale channel power gain
\\\\\\\\\\T?;' :%T) A‘///’/”””””””’ I{rn
m.k = Cm, kW0 In (1 + M) . {]} Z Ry < Ry, Yme M, (2)
Cm kWoTlo E—1 /4
amount of bandwidtH background noise

pre-agreed bandwidth of slice allocated to MVNO m

Net Utility function of MVNO m
price per unit of bandwidth charged by InP

I{FNi ji-?ﬂ

H:rn C:rn pm Z Rk — Pm Z Cm.k (3)

PMVND: maximize um(cﬂnpm} (4}

Crr

The optimization problem of MVNO m

YUN

Ay K Tai Manh Ho, Nguyen H. Tran, S.M Ahsan Kazmi, Choong Seon Hong, "Dynamic Pricing for Resource Allocation in Wireless Network V|rtuaI|zat
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Problem Formulation

° o - . _ -ﬁrm }
Stage I: InP model - Leader Game Cm = S0 Con ks VM
_'"I-I /
Revenue function of the InP R (e, p) = E CrnPrm s (5)
1 represents the total bandwidth sold by InP to the MVNO m
Pmp : maximize R(c,p) (6)
p
subject to ¢, > p;:imc Ym, (7) minimum required BW for each MVNO
M
E cm < C, (8) proportional share of BW among different MVNOs
m=1
K?‘?l
Z Ry < Ry, Vm, (9) service contract constraint.
k=1
0 < pm < ™™, Vm, (10)
KYUN Tai Manh Ho, Nguyen H. Tran, S.M Ahsan Kazmi, Choong Seon Hong, "Dynamic Pricing for Resource Allocation in Wireless Network V|rtuaI|zat
uuuuuu SS\}%Fgac]f(elberg Game Approach", The International Conference on Information Networking (ICOIN 2017), Jan. 11-13, 2017, Da Nang, Vietnam __ *
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Problem Formulation

* Optimal solution for Stage |

solution of Stage Il.

e DT«
KYUNG HEE

! _ d-f +pPm
Pip Z Pm Z Gm, kE o ) (14)

m=1
K

W+ Pm .
ZG-m.,wa—wf ) > pminc, Ym o (15)

: the optimal solution of the Stage-l based on the optimal

M K.,
*[]+P1n )
E E G-m.._kﬁ ~0 <C, (16)
m=1 k=1
K
~ —( wpt+Pm )
E G'rl“l,kﬁ (Ld[} + p-_rn.) “0 {: Rr_r” , \v(ﬂ'l,
k=1
max
0<pm=<p ", Vm, (18)
Tai Manh Ho, Nguyen H. Tran, S.M Ahsan Kazmi, Choong Seon Hong, "Dynamic Pricing for Resource Allocation in Wireless Network Virtualization: (N\
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Problem Formulation: Convert to Lagrangian form

M
L(p7 )\? /‘L'} V) — Z L‘”‘l (p'7713 )"mv /1’7 VTH.)) (19)

n=1

where A,,, i, and v, are Lagrange multipliers and

i e W()'*:‘P’ln )
Lm, (pnu >‘7n: sy V 'm) — Pm Z Gm..,ke =L
k=1
K771
L*"()‘*‘Pm ) ‘-U()‘*‘Pm )
iR /\m Z Gm A() “0 — H Z Gm AP “o (20)
k=1
TG

( wo+Pm )
— VUm E Gm,k(WO + pm) “0 =5 5171,2?771,-
k=1

The dual problem is then given as

max. D(A, u,v)
sk X e 20,

My KYUNG HEE Tai Manh Ho, Nguyen H. Tran, S.M Ahsan Kazmi, Choong Seon Hong, "Dynamic Pricing for Resource Allocation in Wireless Network Virtualization: @
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Problem Formulation: Convert to Lagrangian form

(t41) - (t) (,g) i mn—l—pﬁ)} . N
t4+1) __ L wn min
Lagrangia Am = [Am Gm.k€ — P C ;
multiplier . k=1 (22)
M K, ot p® +
S+ ,u(” 4+ H(i) (Z Z Gom. RF—(—‘%Um ) —C :
m=1 k=1
(23)
o L.\,{}-|—p£1i:| - !
y’ni—l_l) — y’f}i} + H(i} Z Gm k U—-"O + p“))F “0 ) — Rm
k=1
X (24)
6’5;*!3:_{_1) — {5&? + H( (pm,) plna,x)] : (25)
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Dual Based Resource Allocation

Algorithm 1 Dual based Resource Allocation

I: input: € > 0

> initialize: ¢t = 0; pu’; A u@ U0 >
r:.f} , H-L[_H kg >0
3: repeat
4: t+—t+1;
5: Update A5™H . ut+D 8+ according to (22-24):
6: Update pl ") according to wny [ o) +u® = A0 ] (26)
7: until |p£»i+l — pL‘? <€ fm (1— A — s ’
8: Each MVNO calculates ¢, , according to (13), and rounds

ﬂ:n_ I EiCCDI‘diIlg to (2?); T~ Optimal required BW for each MVNO

E:nk — [c:fn.,k:Jﬂk =1, Knm=1,..,M, (27)

S5 KVUN TaiEManh Ho, Nguyen H. Tran, S.M Ahsan Kazmi, Choong Seon Hong, "Dynamic Pricing for Resource Allocation in Wireless Network Virtualizatiggy /
uwva%%c]f(elberg Game Approach", The International Conference on Information Networking (ICOIN 2017), Jan. 11-13, 2017, Da Nang, Vietham ¥
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NUMERICAL ANALYSIS

Revenue

10

[}
4

Power (Watt) Maximum price (p™*)

Revenue

6

4

Power (Watt)

Power (Watt)

Maximum price {pmax} Maximum price {pmax}

() € =50 (d) C = 100

Fig. 4: Revenue versus power (Watt) and maximum price (p™**) for different number of subchannels C.

Tai Manh Ho, Nguyen H. Tran, S.M Ahsan Kazmi, Choong Seon Hong, "Dynamic Pricing for Resource Allocation in Wireless Network Virtualizatiggy:
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NUMERICAL ANALYSIS

4 T T T T
3_..
s
= 2
o
b [T®MVNO1 |
In terms of price paid by the | | r | —=—=MVNO2
MVNOs f | | [~*—MVNO3
0 ; ; ; ; ;
0 5 10 15 20 25 30

lteration

Fig. 3: Convergence of Algorithm 1
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Use Case 2: Radio and Computing Resource Allocation in Co-located
Edge Computing: A Generalized Nash Equilibrium Model

 System Model
e Problem Formulation
e Simulation Results
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Use case 2: System Model

N2 » Consider a single-cell tower model with
‘o N MNOs and a CRP are co-located
g ot wfiyf! » Each MNO has a set of U users
“_’~~D~ | - e l\v‘l."l\«l."l-"P.S—T wui > The challenging problem is joint uplink,
T oAVE| s :: o - downlink, and computing resources
- o ‘4;*_‘_'_'_. o o allocation problem
o |

"o »The task offloading is modeled as a

network of queues where the end-to-
Goal: Generalized Nash Equilibrium Problem

(GNEP) to capture the conflicting interests in the  performance of the queue network
resource allocation among MNOs and CRP

end latency is calculated based on the

*CRP: Computing Resource Provider
*MNO: Mobile Network Operator
|

1N\
- ; ' LAY
IIIIIIII equilibrium model." IEEE Transactions on Mobile Computing (2021)
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Use case 2: System Model

Fraction of CPU

Total CPU resources of
) . . resources allocated to
Total uplink Uplink Signal-to- user MNO Total
bandwidth noise ratio downlink Downlink
owned by MNO bandwidth Signal-to-
Input file owned b noi
: Required CPU cycles Y oise
size 9 y MNO ratio
\\{/;K“T/ Service rate
Task arrives rate at a
micro-datacenter
dl.,dl
Queue utilization ot W4 —>
o Sl x 0
(A~ 0
n M/M/1/PS M/M/1
D ul,,ul .u ~ dl., dl
M/M/1 wszz M/M/1/ e wzoyz
. [ = _ C [ 2 ;.
User arrival rate @ & — o | 0
- S —— M/M/I Output
——J -
0 1, ul —_— dl. dl task size
. wé‘ Y3 w3Y3
MM
_. | | b % .. 0
e M/M/1
*PS: Process Sharing

e 2 IR >
K UNIVERSITY

YUNG HEE  Chit Wutyee Zaw, Choong Seon Hong, et al. "Radio and computing resource allocation in co-located edge computing: A generalized Nash @
equilibrium model." IEEE Transactions on Mobile Computing (2021).
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Use case 2: Problem Formulation

The goal of the CRP is to minimize the total energy cost: | Base-load or static Dynamic power
power consumption consumption
Uplink bandwidth — ~
v Ocre = (1 = a)VPyrt +|aPyrc| At.
Pcrp W“l,W‘”) . minimize | Ocgp|(m, W“l) CRE [( )i, MEL MEC
? m A

Downlink bandwidth

: 1 dl
subjectto | gul 4 4p 4 dl < Ap -y
Uplink + processing +downlink \
i The end-to-end Latency Constraint

latency less than or equal to time

constraint N
Sy me<t .
J=1ucld \ Resource Constraints: total CPU
resources allocated to users must also

U, <1 — ¢, Vu e U;,Vj e T, be less than or equal to 1 (100%)

Utilization of the uplink

et //p-ﬁl—e Vied . :
transmission queue 1; <1 ’ ? Queue Utilization Constraints:

— €. re .
Utilization of the downlink T~ A The utilization of the queues must

transmission queue / be less than 1 to maintain the
stability of the queues

Any small, positive
number (0..1)

Utilization of the processing queue

N
KYUNG HEE  Chit Wutyee Zaw, Choong Seon Hong, et al. "Radio and computing resource allocation in co-located edge computing: A generalized Nash (K_(/
o equilibrium model." IEEE Transactions on Mobile Computing (2021). INTELLIGENT LAB



MNO objective is to minimize the total energy cost by considering the expected completion time, uplink and
downlink budget, the stability of the uplink, downlink and computing resource queues

Power consumption for signal
processing, decoding

Use case 2: Problem Formulation

Power consumption for
encoding, transmitting signals to

ul N ul ya7dl N user
PMNCI_T' (W ; ﬂl} . ITI#HI‘ILIC%E (T)MND_T- (WJ 5 W? ’ IIlj,) \ r/
1 YA 1 dl
I Omno, = (1 —a)[0" p; + 6% pj| Peg +| e Pag| At,
. 1 dl .
SUbJeCt to fﬂ + fﬂ +1t, < At, Vu. |« The end-to-end Latency Constraint
qul
> wi <
ueld;
: Resource Constraints: total bandwidth allocated to
J: MNO p users must also be less than or equal to 1 (100%)
-j: except MNO | Z w, < L
UEHJ-
4 I ul, ul
1/ N~ @y Yy
7:1_.' - i—1 i<4 . ) cul_ul A 4
—— 23_11#3 ZHEM?’ by Z . “uly + TUI- Queue Utilization Constraints:
ueld; by, -1 ’ L
; N _ <] —€ The utilization of the queues must be less
m . \ ™ My mym m |~ K than 1 to maintain the stability of the queues

N
KYUNG HEE  Chit Wutyee Zaw, Choong Seon Hong, et al. "Radio and computing resource allocation in co-located edge computing: A generalized Nash @/
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First, the initial penalty parameters and
resource allocation are chosen

Use case 2: Solution Approach

Algorithm 1 Penalized NEP Algorithm for the Resource
Allocation Game

1: Choose the initial penalty parameters HEE“*“,HH €U,
BS;.00 . o MEC.0 ., — L. milim
5 EI::— {jj B 1"‘ h and h P 0? 1N' lwul.['.i — ’J"Hhu Eﬂd]'” ou Z“Eu_.' Cuy
. . i V}.:I{l _ F.) LA 7] ) :
3: Choose an initial point for m*, Wul.¥ "Wdl* a5 in (30). 0 il (30)
4: repeat fuz 12 U, ” Y
S . 0 JI us
5. CRP solves the problem in (28). YT T |£¢‘J-|
6:  Each MNO j solves the problem in (29). !
7: until [W*4, W*dl 'm*] is unchanged. ) Each player solves its optimization problem
8: if hu( sullim* wrd)y < 0,Vu € U, f; (W;’dl, m;) < until NE is found
0,j=1,---,N and g(W** m*) <0 then
9. (Wil m* W+ is a GNE. Updates the penalty parameters
10:_else (VEuwk 4 gUEK dl
TE, k e S (@™, M, @) > 0,
11: Penalty parameterﬁ, EE k1 V’UJ - H FCBS k+1_’j — p ot = { %E,,L if h”( u| Mo, w(u) < 0. (31)
1,---,N and ﬁg’[EC*"“'Jrl, p=0,---,N,are updated as in v 1 | -
(31), (32) and (33). Bkl _ x;}?H gt ﬁf'h"k if f;(W *dl ,m}) > 0, (32)
122 k+—k+1. S i if f;(W *‘“ m?) <0, ‘
13: go to line number 5.
14: end if MECA+1 _ K;;IE( Koy au}:-: kg g(W”'“l.,m*) > 0.
P (MECK if (W1l m*) <o, (33)

KYUNG HEE  Chit Wutyee Zaw, Choong Seon Hong, et al. "Radio and computing resource allocation in co-located edge computing: A generalized Nash @
e equilibrium model." IEEE Transactions on Mobile Computing (2021). o

INTELLIGENT LAB



Use case 2: Numerical Results

le7 CRP le6 MNO 1

—a— NEP
—+— Joint NEP

=
i
Il

Energy Consumption (watt)

0.5
'|_
0.0 L — —— . .
0 5 10 15 0 5 10 15
% leb B E'INQ 2 o le6 MNO 3
32-5"  E— ——— " 5 = =
=
2 204 2
=9
g
% 1.5
5]
L 14
g'a [ .04
Lﬁ 0 ] 10 15 0 5 10 15
[terations [terations

Convergence of the proposed algorithm
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Al Based Approaches
 System Model

* Problem Formulation
* Solution Approach
e Simulation Results
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* The basic goal of an Al in 5G and beyond network is its ability to extract,
predict, and characterize specific patterns from datasets

Introduction: Al Based Approaches

* To unleash the true potential of 5G and beyond networks:

* Intelligent functions using Al across both the edge and core of the network are
required along with the novel enabling technologies

* Al functions must be able to:
* Adaptively exploit the wireless system resources
* Generated data to optimize network operation
* Guarantee the QoS in real time

* Such mobile edge and core intelligence can only be realized by integrating
fundamental notions of artificial intelligence (Al) across the wireless
infrastructure and end-user devices
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Introduction: How Close Are Operators To Zero-Touch Automation?

A
High ==
“Ad hoc”
- ) Procedural
c Reactive
E workflows
E Proactive
$ -
z -
c Predictive Policy driven
(s}
£ SLA driven Rule based
I i o
Al/ML assisted S Autonomous
( )
Al/ML enabled/driven (Zero '_I'ouch)
Low - : h
Low Degree of automation High
Source: Intel

FIGURE 19. Infrastructure automation maturity

AW '\ )
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Introduction: Timescales and Composition of Slice Management

Phase
Tenants and
| Timescale
( Acceptance or
Rejection
Al-Based Admission 2 g
Control e §
o
Resource utilization 4
measurements
Al-Based Resource g
Orchestration S
g
. @
Al-Based Radio 8
Scheduling  ;
A ~/

Comprehensive network slicing framework. The diagram outlines the timescales and
composition of the key slice management functions.

KYUNG HEE  D. Bega, M. Gramaglia, A. Garcia-Saavedra, M. Fiore, A. Banchs and X. Costa-Perez, "Network Slicing Meets Artificial Intelligence: An Al-Based @
“ Framework for Slice Management," in IEEE Communications Magazine, vol. 58, no. 6, pp. 32-38, June 2020, doi: 10.1109/MCOM.001.1900653. NETWORKING



Predict the Demand

Service demand —— Capacity forecast
—— Traffic prediction

S 1 _
© n* i i \
E , Ay | . .‘ A .

-y LI b AN i i | !
E 05 _.l‘-'H- | 'f'l"' | w _i *i. { Il*ﬁf |‘1 fﬂi ‘4‘ n ‘
o u I . . i | |
LV A v B A ¥ A \/
Z. 0 | | | | | | |

—
I3
.::,Ul

oo
[ S
h h

Error

=
k-2
o

| | | | | | |
Mon Tue Wed Thu Fri Sat Sun

Top: predictions of a sample one-week demand, as produced by a legacy MAE traffic predictor and by a capacity forecasting
model; middle: error incurred by the capacity forecasting model, which only generates overprovisioning; bottom: error
incurred by the MAE traffic predictor, which leads to frequent service requirement violations.

KYUNG HEE D. Bega, M. Gramaglia, A. Garcia-Saavedra, M. Fiore, A. Banchs and X. Costa-Perez, "Network Slicing Meets Artificial Intelligence: An Al-Based @
o Framework for Slice Management," in IEEE Communications Magazine, vol. 58, no. 6, pp. 32-38, June 2020, doi: 10.1109/MCOM.001.1900653. NETWORKING



Network Slicing Meets Artificial Intelligence

- K trainin
Accept Neural |Long-term g
network - ey
Feed-forward
\. 3
[ g g 1 ’Irnstant.
-€ evenue :
System actual load ystem |.REVENUE eT——
: MSE
\ New slice request ' .
o N |_ I f D _l
Reject Neural
i n;twork ) r —
R e i 2 Qe training

Figure 2. High-level design of Al-based slice admission control.
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Various Machine Learning Approaches

* Reinforcement Learning (RL)

* Q-Learning can efficiently approximate the optimal slice admission policy that maximizes
the MNQO’s revenue [1]

* RL algorithms can be designed model-free by appropriately selecting the reward
functions, which makes them much more robust against imperfect estimations of the slicing
statistics

* Deep Learning

* As the most important part of modern artificial intelligence technologies, artificial neural
networks (ANN) are known to be efficient in modeling non-linear systems.

* This can be used to enhance RL methods into deep reinforcement learning (DRL) methods,
such the deep Q-Learning method reported in [2].

* Another common application of ANN is the model estimation and prediction of complex
non-linear processes.

* Encoder-decoder structured [3]cognitive network is proven capable to predict service
capacity requirement in a data-driven fashion with high accuracy, which helps the slice
orchestrator to make decisions in slice admission control and cross-slice resource
allocation.

[1] A. Ayala-Romero et al., “vrAln: A Deep Learning Approach Tailoring Computing and Radio Resources in Virtualized RANs,” Proc. ACM MobiCom, Oct. 2019, pp. 1-16.
[2] D. Bega et al., “A Machine Learning Approach to 5G Infrastructure Market Optimization,” IEEE Trans. Mobile Computing, vol. 19, no. 3, Feb. 2020, pp. 498-512.
[3] T. P. Lillicrap et al., “Continuous Control With Deep Reinforcement Learning,” arXiv preprint arXiv:1509.02971, 2015.
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Use case : Intelligent Resource Slicing for eMBB and
URLLC Coexistence in 5G and Beyond: A Deep

Reinforcement Learning Based Approach

Al for 5G Networks
 Network Slicing Meets Artificial Intelligence
 Evolution of Operations Functionality

e DT«
ST



System Model

Intelligent Resource Slicing for eMBB and URLLC Coexistence in 5G and Beyond: A Deep
Reinforcement Learning Based Approach.

gNB

* This paper studies the resource slicing problem in a dynamic multiplexing URLLC traffic
scenario of two distinct 5G services, namely Ultra-Reliable Low Latency
Communications (URLLC) and enhanced Mobile Broad Band (eMBB).

* While eMBB services focus on high data rates, URLLC is very strict in terms of = ;
latencv and reliabilitv. : SES phone

RB (360kHzx0.5ms) o Transport Block automation
URLLC sTTI (mini-slot) . Self-Driving car

e
eMBB traffic

Smart

4

‘CB#l CB#2 CB#3 CB#4 CB#5 CB#6 CB#7
A A A

A A A A A

Frequency

eMBB user 3
eMBB user 4

We propose a system design in which eMBB traffic is
transmitted over long TTls while URLLC traffic is
transmitted over short TTls by puncturing the

ongoing eMBB transmissions.
Transmitting the incoming URLLC traffic in the next

short TTI ensures its latency requirement.

180kHz

URLLC transmission
~

Resource
element

-

12 subcarriers x15kHz

RB
(180kHz>1ms) o188 TT] (time slot)

\_\( y,
URLLC Transport Block

OFDI\T’I symbol

Time
TTI : Transmission Time Interval, CB : Code Block

Madyan Alsenwi, Nguyen H. Tran, Mehdi Bennis, Shashi Raj Pandey, Anupam Kumar Bairagi, Choong Seon Hong , “Intelligent Resource Slicing for
eMBB and URLLC Coexistence in 5G and Beyond: A Deep Reinforcement Learning Based Approach,” IEEE Transactions on Wireless @
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Problem Formulation

We aim at:

1. Maximizing the eMBB data rate,

2. Satisfying the URLLC reliability constraint, and

3. reducing the impact of URLLC on eMBB transmissions.

The data rate of eMBB traffic is captured by the Shannon’s
capacity considering the impact of URLLC transmissions,
while URLLC depends on the finite blocklength capacity
model due to its small packets size nature.

The objective function is formulated based on
Markowitz mean-variance model to maximize the
average eMBB data rate for a given level of risk.
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Problem Formulation

The variance part captures the dynamic characteristics of

RBs allocation variable, Power allocation variable, puncturing variable

Weighting parameter Data rate of eMBB user k at time slot t

x })Ifléze ZEh[ Zrk(t)] — BVary, [ri(t)]

Data rate of URLLC N URLLC packet size
v
user n at time slot gubject to Pr ro(t) < {L(t)] < €,
1 t

B
Zpkb(t) < Pmax»

b=1

xkp(t) <1, Vb e B,

M T

o
Il

1
pip(t) >0, Yk e K, b e B,
xkp(t) € {0,1}, Vk e K, be B,

zp (1) €40,1,.... M}, Yk e K, be B,

wireless channels

(1a)

(1b) URLLC reliability

Total number of URLLC packets at a time slot t

(1c)

(1d)
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We propose a two-phase-framework, including:

1. eMBB resource allocation phase. 2. URLLC scheduling phase.
RBs and transmission power are we propose a DRL-based algorithm to
allocated to eMBB users by applying schedule the URLLC transmissions over
some optimization techniques. the ongoing eMBB transmissions.

1. eMBB Resource Allocation Phase:
We first simplify the objective function to a smoothing form and eliminate the complexity caused
by the variance by using an equivalent risk-averse utility function.
We consider the exponential function that can capture both the mean and variance as defined in:

K
2 0] +062). (3)

k=1

+ = Var

T

i‘;(t))], ‘ g(xapaz) Ey Z (I)
 KYUNG HEE u controls the desired risk- (&:
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Proposed Solution Approach

1. eMBB Resource Allocation Phase (Cont.):

* We propose a Decomposition and Relaxation based
Resource Allocation (DRRA) algorithm. Algorithm 1 : DRRA Algorithm for the eMBB/URLLC
coexistence Problem
[ Initialization: Set : = 0, €1.€9.e3 > 0, and find 1nitial
feasible solutions (x(*), p(®) w(©):
: Decompose P into P1, P2, and P3;
3: Relax P1 and P3 to a concave problems;

0

3

4: repeat

5. Compute ! from (15), (14) at given p?, and 2*;
'(iﬂ), and z':

e The proposed DRRA algorithm decomposes the
optimization problem into three subproblems: 1)
eMBB RBs allocation, 2) eMBB power allocation, and
3) URLLC scheduling.

* We replace the integer variable in the URLC
schgdulmg problem, ie., the nu-mb.er of pL.mctured 6 Compute p*D from (17) at given i
mini-slots, by a continuous weighting variable for 7. Compute w*+D from (23) at given 2+, and p*+)
each RB. & =i+l

o A . (i41) _ i o (i41) _ i
 Later, we calculate the number of punctured mini- o until | @ ) z' || < 1, and || p P < e
and || wi D —w' || < es;

slots from each RB by modeling it as a binomial = .
distribution with parameters puncturing weight and 10 Compute @ from (14) based on @ '
P P & 8 11: Set p* = pUtD) and z* = M x wtY);

number of mini-slots in each time slot. 12: Then. set (m*.p*. z*) as the desired solution.

i+1)

.
?
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Proposed Solution Approach

the data rate of eMBB/URLLC channel e Temporal-Difference (TD)
2. URLLC Resource Scheduling Phase: gain/total number of URLLC pac'@i
Environment

* The URLLC scheduling obtained by the DRRA algorithm may violate the URLLC {‘Wre'%”mrk’}

reliability constraint at the worst-case conditions due to the relaxation applied to S

the probability constraint. £ §
* In practice, URLLC traffic is random and sporadic; thus, it is necessary to lf —

dynamically and intelligently allocate resources to the URLLC traffic by interacting

with the environment. *(\——@:)—/—/4

* Therefore, we propose a DRL-based algorithm to tackle the dynamic URLLC traffic
and channel variations.

Agent (gNB)

 To handle the slow convergence issue of the DRL, we propose a policy gradient based actor-critic
learning (PGACL) algorithm that can learn policies by combining the policy learning and value learning
with a good convergence rate.

* Moreover, at the initial start, we leverage the URLLC scheduling results obtained by the DRRA
algorithm in the eMBB resource allocation phase to train the PGACL algorithm and improve its
convergence time.

* Hence, combining the advantages of the DRRA and PGACL algorithms (DRRA-PGACL) provides a
reliable and efficient resource allocation approach.
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Proposed Solution Approach

e Considering the requirements of eMBB
and URLLC services, we formulate the
reward function as:

N
Rla()(1) = 8(t) + 6()B| ). ri(e) = LL(1)|.
n=1

* The @(t) is a time-varying weight that
ensures the URLLC reliability over time
slots where the network states change
dynamically.

* The experience pool of the proposed
PGACL algorithm is initialized according
to the current optimal solution
obtained by the DRRA algorithm.

KYUNG HEE
UNIVERSITY

x(t), plt) <
/ Cellular system )™ Rp) \

Network

information 1
g J f

State space
reducer

w X(t), p(t) rt =
) el
2(t) PGACL o
algorithm
L - )

URLLC scheduling phase
Figure 4: Block diagram of the proposed DRRA-PGACL framework.

X,p,Z: RBs allocation variable, Power allocation variable, puncturing
variable
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Simulation Results

1. Performance analysis of the DRRA algorithm 14
100 3 —— DRRA (u= —10.0)
2 — = —10.0 12 —e— DRRA (u= —1.0)
w— 1= —5.0 a DRRA (u= —0.1)
-1 - CCDF § 10 —&— Sum-Rate
10 F ©
E © 8-
L m
n [ PDF %
Q10" F gz RN g,
@) EooL S
i g
r0.2 <
107 E
F 0.0 : . : .
3 40 45 50 55 60 10 20 30 40 50 60 70 80 90 100
L eMBB users
40 45 50 55 60 10%

eMBB data rate (Mbps) \_\

Figure 7: CCDF and PDF of the sum eMBB data rate for different values of u

>
- Complementary cumulative distribution function (CCDF) and the probability é
density function (PDF) of the eMBB data rate calculated over time for different @
values of p. % o
- Setting u to higher negative values degrades the eMBB sum data rate while 10 F[—— DRRA (u= —10.0)
reducing its variance which leads to more stable and reliable eMBB Fl— 3222 Eﬁ: :(1)'(1);
transmissions over time. | sum-Rate '
- The average eMBB sum data rate is around 50 Mbps and it varies from 40 1072 . . . [ . . 1

10 20 30 40 50 60 70 80 90 100
eMBB users

Mbps to 60 Mbps when p =-5.0.
- Setting u =-10.0 gives data rate between 45 Mbps to 52 Mbps resulting in a
stable eMBB transmission.
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Simulation Results

2. Convergence analysis of the PGACL algorithm
and URLLC reliability analysis.

1.0 1

— PGACL
*&L — DRRA
0.8 1 =
Ke)
e
g T 5
bt | i
0.6 A . 9y
. =2 b Al
o o X3
@) = 02lf
@ o) —
0.4 1 0 10 11 12 13 14_15
N g g Time Slots x103
o
S4
0.2 1 ég mp A LAy ik Violation
o il U M region
10 11 12 13 14_15
0.0 Time ISlots x10 : 1
0.01 0.02 0.03 0.0

Outage probability
Figure 7: CCDF of the outage probabili

PGACL algorithm minimizes the tail-risk of the URLLC outage probability
KYUNG HEE A violation probability around 0.18 when setting reliability threshold = 0.04 @)

UNIVERSITY

Reward

— Optimization-Aided PGACL
— Random-Start PGACL

0] 5000 10000 15000 20000
Time slots

Incurring a worse performance at the beginning when
initializing it with a random data and improves over time.
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Simulation Results

3. eMBB performance analysis:

Rmin = 1.5 Mbps Rmin=2.0 Mbps Rmin=2.5 Mbps
0.95 0.90

0.85
0.85 ‘\‘\‘ﬁ—.—._‘\; 0.80 \k‘—.*_‘;

0.90

> 0.85 0.80 i - 0.75 -
S 0.80 0.75 | 0.70 |
S
o 0.75 0.70 .,_-\I 0.65 -\\\
M 0.70 | == "'ﬁ\.‘\-. 0.65 |- =—@= Proposed ‘\_. 0.60 | =@= Proposed
% - VAT \ MAT \
0.65 I el Sum-Log . 0.60 I el Sum-Log 0.55 - —il= Sum-Log -
e | U | U —f— | el
0.60 | - 0.55 - 0.50
== Sum_Rate == Sum_Rate == Sum_Rate

20 40 60 80 20 40 60 80 20 40 60 80
URLLC Load (average packets/time slot) URLLC Load (average packets/time slot) URLLC Load (average packets/time slot

6 —&— Sum-Rate
> —_—t el
—— Sum-Log
60
MAT
55 —i— Proposed |
"*-....—-——.l-—-._'

18,
o
T

Average eMBB Rate (Mbps)
B
[9)]
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o
T

20 30 40 50 60 70 80 90
. . =
KYUNG HEE URLLC Arrival Rate (packets/time slot) )
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Conclusion
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* Deep Neural Networks are envisioned to fill this gap and serve as key
predicting enabler to support the 5G networks

Conclusion

* Network Management coupled with Al will be defining the future of
wireless networks

(Challenges

* Al-Enhanced Optimization in More Complex Admission Control Scenario

* Cooperative Game with Distributed Learning
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