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• Conclusions
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• Network Resources
• Communication

• Computation

• Caching (Storage), etc…

• Lecture 1
• Network slicing concept

• Resource allocation with optimization (Network Slicing)

• Lecture 2
• Joint Communication, Computation, Caching, and Control in Big Data Multi-access 

Edge Computing

• Game Theory Approaches

• AI/ML Based Approaches

Network Resource Management 3
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Joint Communication, Computation, Caching, and 
Control in Big Data Multi-access Edge Computing

• Introduction
• Joint 4C in Big Data MEC
• Performance Evaluation
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Introduction: Background

• Global mobile data traffic:
By year 2022, there will be 77 Exabytes per month 
of mobile data traffic

.

3/33

• Global number of connected devices  continue to 
increase at  very rapid pace:
By year 2025, there will be 34.2 B with  21.5 B IoT
devices (smartphones, tablets, laptops)

Source: https://iot-analytics.com/state-of-the-iot-update-q1-q2-

2018-number-of-iot-devices-now-7b/

Source: Cisco VNI Mobile, 2019 
(https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/white-paper-c11-738429.html)

Therefore, wireless users’ devices will be 
anywhere, anytime, and connected to 
anything
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Introduction: Background

• Downloading: Data traffic from data centers to users will be 14.9% of global data center traffic by year 2021

4/33

• Offloading: Offloading  traffic will be 71%  of mobile data traffic by year 2022

Edge 
Devices

Edge 
Nodes

Cloud

Source: Cisco VNI Mobile, 2019 
(https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white-paper-c11-738429.html)

Offloading Downloading

From the edge, there will be a tremendous growth of data 
traffic with different scale, distribution, diversity, and velocity 
fall into a big data framework
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Introduction: Motivations and  Problem Statement

.

5/33

Challenges: 

• However, when each MEC server operates independently, it cannot handle all 
computational and big data demands stemming from edge devices. 
How significantly reduce data exchange between edge devices and cloud?

• Edge devices offload tasks and corresponding data with varying rates,  where 
data from multiple edge devices may  reach MEC servers too rapidly with a 
finite or infinite flow, and needs to be processed immediately. 
How to handle such data for delay sensitive and  mission critical applications?

• Integration of MEC with a mobile network environments raises a number of 
challenges related to the coordination of both MEC server and mobile network 
services.
How to formulate a joint communication, computation, and caching for MEC?

Multi-access Edge Computing (MEC)
ETSI introduced Multi-access Edge Computing (MEC) as a suitable technology for providing cloud services to the
edges in closed proximity to the users [1]
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[1]. MEC in 5G networks,” ETSI White Paper No. 28, ISBN No. 979-10-92620-22-1,Jun. 2018.
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Joint 4C in Big Data MEC 8

Solution: Collaboration space for Big Data MEC [1]

We propose joint computing, caching, communication,

and control (4C) at the edge with MEC server collaboration for Big 

Data applications

Anselme Ndikumana, Nguyen H. Tran, Tai Manh Ho, Zhu Han, Walid Saad, Dusit Niyato, Choong Seon Hong , "Joint Communication, Computation, Caching, and 

Control in Big Data Multi-access Edge Computing," IEEE Transactions on Mobile Computing, Vol.19, Issue 6, pp.1359-1374, Jun. 2020
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Joint 4C in Big Data MEC (continued) 9

Collaboration space 

We introduce  overlapping k-mean 

method for collaboration space (OKM-

CS) in MEC that enables  collaboration 

among MEC servers, which is not only 

based on distance measurements, but 

also based on available resources

Anselme Ndikumana, Nguyen H. Tran, Tai Manh Ho, Zhu Han, Walid Saad, Dusit Niyato, Choong Seon Hong , "Joint Communication, Computation, Caching, and 

Control in Big Data Multi-access Edge Computing," IEEE Transactions on Mobile Computing, Vol.19, Issue 6, pp.1359-1374, Jun. 2020
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Joint 4C in Big Data MEC (continued) 10

1. Anselme Ndikumana, Nguyen H. Tran, Tai Manh Ho, Zhu Han, Walid Saad, Dusit Niyato, Choong Seon Hong , "Joint Communication, 

Computation, Caching, and Control in Big Data Multi-access Edge Computing," IEEE Transactions on Mobile Computing, Vol.19, Issue 6, 

pp.1359-1374, Jun. 2020

2. M. Hong, M. Razaviyayn, Z.-Q. Luo, and J.-S. Pang, “A unified algorithmic framework for block-structured optimization involving big datag,” 

IEEE Signal Processing Magazine, vol. 33, no. 1, pp. 57–77, 25 Dec. 2015

3. O. Boswarva et al., “Sitefinder mobile phone base station database,” Edinburgh DataShare , the University of Edinburgh, UK , Feb. 2017.

• We formulate the joint 4C in big data MEC as an optimization problem in [1] that aims at 
maximizing bandwidth saving while minimizing delay, subject to the local computation capabilities of 
user devices, and MEC resource constraints

• In order to solve the formulated problem, which is non-convex, we propose a proximal upper-bound 
problem of the original problem and apply the block successive upper bound minimization (BSUM) 
[2] for solving it. 
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Joint 4C Collaborative Big Data MEC 9/33

✓ In order to satisfy  edge devices’ demands, MEC servers located in the same area need to 

collaborate

✓ We proposed collaboration space formation by using  Overlapping k-Means [1]

✓ In each collaboration space, based on available resources, MEC servers can exchange data, 

tasks, resource utilization information

MEC server

MEC server

MEC server

MEC server
Physical resources in 
collaboration space 

Virtual  resources 

 X2 

Wireless channel 

m: Base station
r: Number of collaboration spaces

:  Average of centroids

[1]. Whang, Joyce Jiyoung, Inderjit S. Dhillon, and David F. Gleich. "Non-exhaustive, 
overlapping k-means." Proceedings of the 2015 SIAM International Conference on Data 
Mining. Society for Industrial and Applied Mathematics, 2015.

Average of centroids

Base station location

Centroids of i

set of all centroids mc

https://doi.org/10.1016/j.eswa.2016.09.025

https://doi.org/10.1016/j.eswa.2016.09.025
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Joint 4C Model for Collaborative Big Data MEC

To offload task and data from edge device to the MEC server, the network will incur a communication cost

10/33

Collaboration space for MEC with three typical scenarios

Communication Model 

Scenario (a)

• Offload a task from edge device to the nearest
MEC server

• The spectrum efficiency and instantaneous
data rate:

• Transmission delay for offloading a task
: Channel gain
: Transmission power
:Task
: Size of input data 

Instantaneous data rate

allocation bandwidth
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• When the nearest MEC server m has insufficient
resources, it forwards a request to another BS n

• The offloading delay between BS m and BS n

Joint 4C Model for Collaborative Big Data MEC 11/33

Collaboration space for MEC with three typical scenarios

Communication Model 

Scenario (b)

Scenario (c)

• When the resources are not available in the
whole collaboration space, BS m forwards the
request to DC

• The offloading delay between BS m and DC

To offload task and data from a user to the MEC server, the network will incur a communication cost

: Channel gain
: Transmission power

: bandwidth 
:Task
: Size of input data 

Worst-case
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Joint 4C Model for Collaborative Big Data MEC 12/33

• Energy consumption of CPU computation:

• The execution latency for task: 

• When                                                         , edge device  can keep the computational task until the resources 
become available for local computation via its device. Otherwise, edge device needs to offload task to MEC 
server

Computation Model

Scenario 1: Local Computation at User Device 

Scenario 2: Computation at MEC Server

Average waiting time
Edge device status parameter

• Offloaded task to MEC server:

• Computation allocation:

Sub-scenario (a)

Offload

constant parameter(related to CPU H/W)
Total computation capacity

Computation workload

Computation deadline

Computation energy

Available energy in user device k
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Joint 4C model for collaborative big data MEC 13/33

• The execution latency:

• When                                      , MEC server m  does not have enough computational resources to meet the 
computation deadline. Then, it forwards a request to another BS n in collaboration space 

• When the resources are not available in the whole collaboration space, BS m forwards the request to DC

Computation Model

Scenario 2: Computation at MEC Server

• Coordination: The constraints to ensure that task is executed at only one location

Control for communication and computation at MEC server

Sub-scenario (b)

Sub-scenario (c)

Total executing time of offloaded task
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Joint 4C model for collaborative big data MEC 14/33

• The profit function and optimization problem for MBS: 

• We propose a distributed optimization control model that coordinates and integrates the communication, 
computation, and caching models

• We use a cache rewards that aims to maximize  the backhaul  bandwidth saving by reducing the data 
exchange between MEC servers and remote DC, i.e., increasing the cache hits:

• We use total offloading and computation delay that aims to minimize delay

Caching  Model at MEC server 

Control  Model for communication, computation, and  caching at MEC server 

Total cache capacity at MEC

Offload(User), offload(MEC), cache

Request arrival rate

Alleviated backhaul bandwidth:

Total delay
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Joint 4C model for collaborative big data MEC 15/33

• The profit function and optimization problem for MBS: Problem Formulation and Solution 

• We formulate the joint 4C in collaborative big-data 
MEC as an optimization problem that jointly minimizes 
both bandwidth consumption and latency as follows:

Solution:  
Using Block Successive Upper-bound Minimization 
(BSUM), we proposed  Distributed optimization 
control algorithm for 4C in big data MEC

Proximal upper-bound function

The solution is updated by solving:

Communication

Computation 

Caching 
Coordination

Alleviated backhaul bandwidthTotal delay

Offload
(User) 

cache

Offload
(MEC)

Total delay Saved backhaul 
bandwidth

Objective function
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Joint 4C model for collaborative big data MEC 16/33

Proposed Algorithm 

BSUM overview[1]:

[1]. Hong, Mingyi, et al. "A unified algorithmic framework for block-structured optimization involving big data: With 
applications in machine learning and signal processing." IEEE Signal Processing Magazine 33.1 (2016): 57-77 (Google 
citation: 393)

RAT : resource allocation
table

surrogate function of the 
original objective
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• For forming collaboration spaces, we use the Sitefinder dataset from 
Edinburgh DataShare [3]

• We randomly select one MNO, which has 12,777 BSs, through use of the 
Overlapping K-mean Method for Collaboration Space (OKM-CS) 
algorithm, where we group these BSs into 1,000 collaborations spaces

• Among 1,000 collaboration spaces, we randomly select one 
collaboration space, which has 12 BSs, and we associate each BS with 1 
MEC server

Performance Evaluation 19

1. O. Boswarva et al., “Sitefinder mobile phone base station database,” Edinburgh DataShare , the University of Edinburgh, UK , Feb. 2017.
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Performance Evaluation 20

• BSUM selection rules:

• Cyc: Cyclic

• G-S: Gauss Southwell

• Ran: Randomized

• D-R-S: Douglas Rachford splitting

• BSUM and D-R-S algorithms enable  to 

decompose our problem into small sub-

problems, and address each sub-problem 

separately

Choong Seon Hong, et al. "Joint Communication, Computation, Caching, and Control in Big Data Multi-access Edge Computing." arXiv preprint 

arXiv:1803.11512, 2018 (Submitted to IEEE Transactions on Mobile Computing ).

Requiring high computational resources
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Game Theory Approaches
• Introduction
• Use Case : Network Slicing: Dynamic Isolation Provisioning and 

Energy Efficiency

21/85
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Introduction: History of Game Theory

• John von Neuman (1903-1957) co-authored, Theory of Games and Economic Behavior, with Oskar
Morgenstern in 1940s, establishing game theory as a field

• John Nash (1928- ) developed a key concept of game theory (Nash equilibrium) which initiated many
subsequent results and studies

• Since 1970s, game-theoretic methods have come to dominate microeconomic theory and other fields

Nobel prizes

• Nobel prize in Economic Sciences 1994 awarded to Nash, Harsanyi (Bayesian games) and Selten
(Subgame perfect equilibrium)

• 2005, Auman and Schelling got the Nobel prize for having enhanced our understanding of
cooperation and conflict through game theory

• 2007, Leonid Hurwicz, Eric Maskin and Roger Myerson won Nobel Prize for having laid the
foundations of mechanism design theory

[22]

Zhu Han, Dusit Niyato, Walid Saad, Tamer Başar, Are Hjørungnes, “Game Theory in Wireless and Communication Networks: 
Theory, Models, and Applications,” Cambridge University Press, 2011

22/85
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Introduction 

Game Theory: Mathematical models and techniques developed in economics to
analyze interactive decision processes, predict the outcomes of interactions,
and identify optimal strategies .

• Game theory techniques were adopted to solve many protocol design issues
(e.g., resource allocation, power control, cooperation enforcement) in wireless
networks

• Difference to control: against other players as well as nature

• Fundamental component of game theory is the notion of a game
• A game is described by a set of rational players, the strategies associated with the players, and the
payoffs for the players. A rational player has his own interest, and therefore, will act by choosing an
available strategy to achieve his interest.

• A player is assumed to be able to evaluate exactly or probabilistically, the outcome or payoff (usually
measured by the utility) of the game which depends not only on his action but also on other players’
actions.

Game Theory in Wireless and Communication Networks: Theory, Models, and Applications

23/85
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Adam

Heiki

Bob

Fran

Geeta

Carl

IrinaDavid

Geeta, Heiki, Irina, Fran

Irina, Fran, Heiki, Geeta

Geeta, Fran, Heiki, Irina

Irina, Heiki, Geeta, Fran

Carl >  Adam

David >  Bob

We reach a stable marriage!

Introduction: Matching Game: GS algorithm

2012 Nobel Prize in Economic Science.

Game Theory in Wireless and Communication Networks: Theory, Models, and Applications

24/85
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Introduction: Stackelberg Games (1)

• Hierarchy among the players exists
• The player that imposes its own strategy upon others is called the leader

• The other players who react to the leader's strategy are called followers

• Every two-person finite game admits a Stackelberg strategy for the leader

• Whenever the follower has a single optimal response for every strategy of
the leader, then the leader can, at the Stackelberg solution, perform at least
as good as at the Nash equilibrium

.

Game Theory in Wireless and Communication Networks: Theory, Models, and Applications

25/85
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Introduction: Stackelberg Games (2)

• Stackelberg games are not limited to the single-leader single-follower case

• In a single-leader multi-follower case, the Stackelberg equilibrium is basically
composed of an optimal policy for the leader with respect to a Nash
equilibrium of the followers
• It is often desirable to have a unique Nash equilibrium for the followers game, so as to make the

Stackelberg solution tractable

• Example application: Pricing for Internet Service Providers

• Multi-leader multi-follower Stackelberg games

• At the Stackelberg equilibrium, both leaders and followers are in a Nash equilibrium
(the Nash equilibria are correlated)

• Hard to solve when the followers game has many equilibria

.

Game Theory in Wireless and Communication Networks: Theory, Models, and Applications

26/85
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Example: Buyer/Seller Game (Two Level)

⚫ Buyer/Seller (Leader/Follower) Game

− Sender (buyer) buying the services from the relays to improve its performance,
such as the transmission rate

− Relays (sellers) selling service, such as power, by setting prices

− Tradeoffs: Price too high, sender buying from others; price too low, profit low;
sender decides to buy whose and how much to spend

− Procedures: Convergence to the optimal equilibrium

− Example: Power Control and Relay Section for Cooperative Transmission

$1000

Per Power

$800

Per Power

.

Game Theory in Wireless and Communication Networks: Theory, Models, and Applications

27/85
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Use Case : Dynamic Pricing for Resource Allocation 
in Wireless Network Virtualization: A Stackelberg
Game Approach

• System Model
• Problem Formulation
• Simulation Results

28/85
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System Model 29/85

set C of 
orthogonal sub-
channels

Formulate the resource allocation problem for the 
wireless network virtualization as a hierarchical two 
stage Stackelberg game with InP plays the leader 
role and MVNOs act as followers.

Tai Manh Ho, Nguyen H. Tran, S.M Ahsan Kazmi, Choong Seon Hong, "Dynamic Pricing for Resource Allocation in Wireless Network Virtualization: 
A Stackelberg Game Approach", The International Conference on Information Networking (ICOIN 2017), Jan. 11-13, 2017, Da Nang, Vietnam
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Stackelberg Game 30

Tai Manh Ho, Nguyen H. Tran, S.M Ahsan Kazmi, Choong Seon Hong, "Dynamic Pricing for Resource Allocation in Wireless Network Virtualization: A 
Stackelberg Game Approach", The International Conference on Information Networking (ICOIN 2017), Jan. 11-13, 2017, Da Nang, Vietnam
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• Stage II: MVNO model - Followers Game

Problem Formulation 31

Tai Manh Ho, Nguyen H. Tran, S.M Ahsan Kazmi, Choong Seon Hong, "Dynamic Pricing for Resource Allocation in Wireless Network Virtualization: A 
Stackelberg Game Approach", The International Conference on Information Networking (ICOIN 2017), Jan. 11-13, 2017, Da Nang, Vietnam

achievable data rates

amount of bandwidth

normalized transmit power large-scale channel power gain

background noise

pre-agreed bandwidth of slice allocated to MVNO m

Net Utility function of MVNO m

price per unit of bandwidth charged by InP

The optimization problem of MVNO m
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• Stage I: InP model - Leader Game

Problem Formulation 32

Tai Manh Ho, Nguyen H. Tran, S.M Ahsan Kazmi, Choong Seon Hong, "Dynamic Pricing for Resource Allocation in Wireless Network Virtualization: A 
Stackelberg Game Approach", The International Conference on Information Networking (ICOIN 2017), Jan. 11-13, 2017, Da Nang, Vietnam

Revenue function of the InP

minimum required BW for each MVNO

proportional share of BW among different MVNOs

service contract constraint.

represents the total bandwidth sold by InP to the MVNO m
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• Optimal solution for Stage I : the optimal solution of the Stage-I based on the optimal 

solution of Stage II.

Problem Formulation 33

Tai Manh Ho, Nguyen H. Tran, S.M Ahsan Kazmi, Choong Seon Hong, "Dynamic Pricing for Resource Allocation in Wireless Network Virtualization: 
A Stackelberg Game Approach", The International Conference on Information Networking (ICOIN 2017), Jan. 11-13, 2017, Da Nang, Vietnam



NETWORKING 

INTELLIGENT LAB

Problem Formulation: Convert to Lagrangian form 34

Tai Manh Ho, Nguyen H. Tran, S.M Ahsan Kazmi, Choong Seon Hong, "Dynamic Pricing for Resource Allocation in Wireless Network Virtualization: 
A Stackelberg Game Approach", The International Conference on Information Networking (ICOIN 2017), Jan. 11-13, 2017, Da Nang, Vietnam
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Problem Formulation: Convert to Lagrangian form 35

Lagrangian
multiplier
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Dual Based Resource Allocation 36

Tai Manh Ho, Nguyen H. Tran, S.M Ahsan Kazmi, Choong Seon Hong, "Dynamic Pricing for Resource Allocation in Wireless Network Virtualization: A 
Stackelberg Game Approach", The International Conference on Information Networking (ICOIN 2017), Jan. 11-13, 2017, Da Nang, Vietnam

Optimal required BW for each MVNO
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NUMERICAL ANALYSIS 37

Tai Manh Ho, Nguyen H. Tran, S.M Ahsan Kazmi, Choong Seon Hong, "Dynamic Pricing for Resource Allocation in Wireless Network Virtualization: A 
Stackelberg Game Approach", The International Conference on Information Networking (ICOIN 2017), Jan. 11-13, 2017, Da Nang, Vietnam
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NUMERICAL ANALYSIS 38

Tai Manh Ho, Nguyen H. Tran, S.M Ahsan Kazmi, Choong Seon Hong, "Dynamic Pricing for Resource Allocation in Wireless Network Virtualization: A 
Stackelberg Game Approach", The International Conference on Information Networking (ICOIN 2017), Jan. 11-13, 2017, Da Nang, Vietnam

In terms of price paid by the 
MVNOs
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Use Case 2: Radio and Computing Resource Allocation in Co-located
Edge Computing: A Generalized Nash Equilibrium Model

• System Model
• Problem Formulation
• Simulation Results

39/85
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Use case 2: System Model 40

➢Consider a single-cell tower model with

N MNOs and a CRP are co-located

➢Each MNO has a set of U users

➢The challenging problem is joint uplink,

downlink, and computing resources

allocation problem

➢The task offloading is modeled as a

network of queues where the end-to-

end latency is calculated based on the

performance of the queue network

Goal: Generalized Nash Equilibrium Problem 
(GNEP) to capture the conflicting interests in the 
resource allocation among MNOs and CRP

Chit Wutyee Zaw, Choong Seon Hong, et al. "Radio and computing resource allocation in co-located edge computing: A generalized Nash
equilibrium model." IEEE Transactions on Mobile Computing (2021).

*CRP: Computing Resource Provider
*MNO: Mobile Network Operator
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Use case 2: System Model 41

Chit Wutyee Zaw, Choong Seon Hong, et al. "Radio and computing resource allocation in co-located edge computing: A generalized Nash
equilibrium model." IEEE Transactions on Mobile Computing (2021).

User arrival rate

Task arrives rate at 
micro-datacenter

Total uplink 
bandwidth 
owned by MNO

Input file 
size

Uplink Signal-to-
noise ratio

*PS: Process Sharing

Queue utilization

Fraction of CPU 
resources allocated to 
user 

Total  CPU resources of 
MNO

Required CPU cycles

Service rate

Total 
downlink 

bandwidth 
owned by 

MNO

Downlink 
Signal-to-

noise 
ratio

Output 
task size
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Use case 2: Problem Formulation 42

The goal of the CRP is to minimize the total energy cost:

The end-to-end Latency Constraint

Resource Constraints: total CPU
resources allocated to users must also
be less than or equal to 1 (100%)

Queue Utilization Constraints:
The utilization of the queues must
be less than 1 to maintain the
stability of the queues

Dynamic power 
consumption

Base-load or static 
power consumption

Chit Wutyee Zaw, Choong Seon Hong, et al. "Radio and computing resource allocation in co-located edge computing: A generalized Nash
equilibrium model." IEEE Transactions on Mobile Computing (2021).

Uplink bandwidth 

Downlink bandwidth 

Utilization of the uplink 
transmission queue 

Utilization of the downlink 
transmission queue

Utilization of the processing queue 
Any small, positive 
number (0..1)

Uplink + processing +downlink 
latency less than or equal to time 
constraint 
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Use case 2: Problem Formulation 43

MNO objective is to minimize the total energy cost by considering the expected completion time, uplink and
downlink budget, the stability of the uplink, downlink and computing resource queues

The end-to-end Latency Constraint

Resource Constraints: total bandwidth allocated to
users must also be less than or equal to 1 (100%)

Queue Utilization Constraints:
The utilization of the queues must be less
than 1 to maintain the stability of the queues

Power consumption for signal 
processing, decoding

Power consumption for  
encoding, transmitting signals to 
users

Chit Wutyee Zaw, Choong Seon Hong, et al. "Radio and computing resource allocation in co-located edge computing: A generalized Nash
equilibrium model." IEEE Transactions on Mobile Computing (2021).

J: MNO
-j: except MNO j
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Use case 2: Solution Approach 44

First, the initial penalty parameters and 
resource allocation are chosen

Each player solves its optimization problem 
until NE is found

Updates the penalty parameters

Chit Wutyee Zaw, Choong Seon Hong, et al. "Radio and computing resource allocation in co-located edge computing: A generalized Nash
equilibrium model." IEEE Transactions on Mobile Computing (2021).
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Use case 2: Numerical Results 45

Convergence of the proposed algorithm

Chit Wutyee Zaw, Choong Seon Hong, et al. "Radio and computing resource allocation in co-located edge computing: A generalized Nash
equilibrium model." IEEE Transactions on Mobile Computing (2021).
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AI Based Approaches
• System Model
• Problem Formulation
• Solution Approach
• Simulation Results
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• The basic goal of an AI in 5G and beyond network is its ability to extract, 
predict, and characterize specific patterns from datasets

• To unleash the true potential of 5G and beyond networks:
• Intelligent functions using AI across both the edge and core of the network are 

required along with the novel enabling technologies

• AI functions must be able to:
• Adaptively exploit the wireless system resources 
• Generated data to optimize network operation
• Guarantee the QoS in real time

• Such mobile edge and core intelligence can only be realized by integrating 
fundamental notions of artificial intelligence (AI) across the wireless 
infrastructure and end-user devices

Introduction: AI Based Approaches 47
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Introduction: How Close Are Operators To Zero-Touch Automation? 48

Source: 5G ORCHESTRATION AND AUTOMATION TOWARD ZERO-TOUCH SERVICE MANAGEMENT



NETWORKING 

INTELLIGENT LAB

Introduction: Timescales and Composition of Slice Management 49

Comprehensive network slicing framework. The diagram outlines the timescales and 
composition of the key slice management functions.

D. Bega, M. Gramaglia, A. Garcia-Saavedra, M. Fiore, A. Banchs and X. Costa-Perez, "Network Slicing Meets Artificial Intelligence: An AI-Based 
Framework for Slice Management," in IEEE Communications Magazine, vol. 58, no. 6, pp. 32-38, June 2020, doi: 10.1109/MCOM.001.1900653.
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Predict the Demand 50

D. Bega, M. Gramaglia, A. Garcia-Saavedra, M. Fiore, A. Banchs and X. Costa-Perez, "Network Slicing Meets Artificial Intelligence: An AI-Based 
Framework for Slice Management," in IEEE Communications Magazine, vol. 58, no. 6, pp. 32-38, June 2020, doi: 10.1109/MCOM.001.1900653.

Top: predictions of a sample one-week demand, as produced by a legacy MAE traffic predictor and by a capacity forecasting 
model; middle: error incurred by the capacity forecasting model, which only generates overprovisioning; bottom: error 
incurred by the MAE traffic predictor, which leads to frequent service requirement violations.
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Network Slicing Meets Artificial Intelligence 51

D. Bega, M. Gramaglia, A. Garcia-Saavedra, M. Fiore, A. Banchs and X. Costa-Perez, "Network Slicing Meets Artificial Intelligence: An AI-Based 
Framework for Slice Management," in IEEE Communications Magazine, vol. 58, no. 6, pp. 32-38, June 2020, doi: 10.1109/MCOM.001.1900653.
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• Reinforcement Learning (RL)
• Q-Learning can efficiently approximate the optimal slice admission policy that maximizes 

the MNO’s revenue [1]

• RL algorithms can be designed model-free by appropriately selecting the reward 
functions, which makes them much more robust against imperfect estimations of the slicing 
statistics

• Deep Learning 
• As the most important part of modern artificial intelligence technologies, artificial neural 

networks (ANN) are known to be efficient in modeling non-linear systems.

• This can be used to enhance RL methods into deep reinforcement learning (DRL) methods, 
such the deep Q-Learning method reported in [2].

• Another common application of ANN is the model estimation and prediction of complex 
non-linear processes. 

• Encoder-decoder structured [3]cognitive network is proven capable to predict service 
capacity requirement in a data-driven fashion with high accuracy, which helps the slice 
orchestrator to make decisions in slice admission control and cross-slice resource 
allocation.

Various Machine Learning Approaches 52

[1] A. Ayala-Romero et al., “vrAIn: A Deep Learning Approach Tailoring Computing and Radio Resources in Virtualized RANs,” Proc. ACM MobiCom, Oct. 2019, pp. 1–16.
[2] D. Bega et al., “A Machine Learning Approach to 5G Infrastructure Market Optimization,” IEEE Trans. Mobile Computing, vol. 19, no. 3, Feb. 2020, pp. 498–512. 
[3] T. P. Lillicrap et al., “Continuous Control With Deep Reinforcement Learning,” arXiv preprint arXiv:1509.02971, 2015. 
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Use case : Intelligent Resource Slicing for eMBB and 
URLLC Coexistence in 5G and Beyond: A Deep 
Reinforcement Learning Based Approach
• AI for 5G Networks
• Network Slicing Meets Artificial Intelligence
• Evolution of Operations Functionality
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Intelligent Resource Slicing for eMBB and URLLC Coexistence in 5G and Beyond: A Deep 
Reinforcement Learning Based Approach.

• This paper studies the resource slicing problem in a dynamic multiplexing 
scenario of two distinct 5G services, namely Ultra-Reliable Low Latency 
Communications (URLLC) and enhanced Mobile Broad Band (eMBB).

• While eMBB services focus on high data rates, URLLC is very strict in terms of 
latency and reliability.

We propose a system design in which eMBB traffic is 
transmitted over long TTIs while URLLC traffic is 
transmitted over short TTIs by puncturing the 
ongoing eMBB transmissions.
Transmitting the incoming URLLC traffic in the next 
short TTI ensures its latency requirement. 

System Model

Madyan Alsenwi, Nguyen H. Tran, Mehdi Bennis, Shashi Raj Pandey, Anupam Kumar Bairagi, Choong Seon Hong , “Intelligent Resource Slicing for 

eMBB and URLLC Coexistence in 5G and Beyond: A Deep Reinforcement Learning Based Approach,” IEEE Transactions on Wireless 

Communications, Vol. 20, Issue 7, pp. 4585-4600, July 2021

TTI : Transmission Time Interval, CB : Code Block
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Problem Formulation

We aim at:
1. Maximizing the eMBB data rate,
2. Satisfying the URLLC reliability constraint, and
3. reducing the impact of URLLC on eMBB transmissions.

The data rate of eMBB traffic is captured by the Shannon’s
capacity considering the impact of URLLC transmissions,
while URLLC depends on the finite blocklength capacity
model due to its small packets size nature.

The objective function is formulated based on
Markowitz mean-variance model to maximize the
average eMBB data rate for a given level of risk.
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Problem Formulation

Data rate of eMBB user k at time slot tWeighting parameter 

URLLC packet sizeData rate of URLLC 
user n at time slot t 

Total number of URLLC packets at a time slot t

URLLC reliability

RBs allocation variable, Power allocation variable, puncturing variable

The variance part captures the dynamic characteristics of 
wireless channels
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Proposed Solution Approach

1. eMBB resource allocation phase.

57/11

RBs and transmission power are
allocated to eMBB users by applying
some optimization techniques.

we propose a DRL-based algorithm to
schedule the URLLC transmissions over
the ongoing eMBB transmissions.

1. eMBB Resource Allocation Phase:
We first simplify the objective function to a smoothing form and eliminate the complexity caused
by the variance by using an equivalent risk-averse utility function.
We consider the exponential function that can capture both the mean and variance as defined in:

2.  URLLC scheduling phase.

We propose a two-phase-framework, including:

μ controls the desired risk-
sensitivity
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Proposed Solution Approach

• We propose a Decomposition and Relaxation based
Resource Allocation (DRRA) algorithm.

• The proposed DRRA algorithm decomposes the
optimization problem into three subproblems: 1)
eMBB RBs allocation, 2) eMBB power allocation, and
3) URLLC scheduling.

• We replace the integer variable in the URLC
scheduling problem, i.e., the number of punctured
mini-slots, by a continuous weighting variable for
each RB.

• Later, we calculate the number of punctured mini-
slots from each RB by modeling it as a binomial
distribution with parameters puncturing weight and
number of mini-slots in each time slot.

1. eMBB Resource Allocation Phase (Cont.):
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Proposed Solution Approach

2. URLLC Resource Scheduling Phase:

• The URLLC scheduling obtained by the DRRA algorithm may violate the URLLC
reliability constraint at the worst-case conditions due to the relaxation applied to
the probability constraint.

• In practice, URLLC traffic is random and sporadic; thus, it is necessary to
dynamically and intelligently allocate resources to the URLLC traffic by interacting
with the environment.

• Therefore, we propose a DRL-based algorithm to tackle the dynamic URLLC traffic
and channel variations.

• To handle the slow convergence issue of the DRL, we propose a policy gradient based actor-critic
learning (PGACL) algorithm that can learn policies by combining the policy learning and value learning
with a good convergence rate.

• Moreover, at the initial start, we leverage the URLLC scheduling results obtained by the DRRA
algorithm in the eMBB resource allocation phase to train the PGACL algorithm and improve its
convergence time.

• Hence, combining the advantages of the DRRA and PGACL algorithms (DRRA-PGACL) provides a
reliable and efficient resource allocation approach.

the data rate of eMBB/URLLC channel 
gain/total number of URLLC packets

e Temporal-Difference (TD)
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Proposed Solution Approach

• Considering the requirements of eMBB
and URLLC services, we formulate the
reward function as:

• The ∅(𝑡) is a time-varying weight that
ensures the URLLC reliability over time
slots where the network states change
dynamically.

• The experience pool of the proposed
PGACL algorithm is initialized according
to the current optimal solution
obtained by the DRRA algorithm.

Figure 4: Block diagram of the proposed DRRA-PGACL framework.

60/11

x,p,z: RBs allocation variable, Power allocation variable, puncturing 
variable
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Simulation Results 
1. Performance analysis of the DRRA algorithm

Figure 7: CCDF and PDF of the sum eMBB data rate for different values of 𝜇

- Complementary cumulative distribution function (CCDF) and the probability 
density function (PDF) of the eMBB data rate calculated over time for different 
values of μ. 

- Setting μ to higher negative values degrades the eMBB sum data rate while 
reducing its variance which leads to more stable and reliable eMBB
transmissions over time. 

- The average eMBB sum data rate is around 50 Mbps and it varies from 40 
Mbps to 60 Mbps when μ = −5.0. 

- Setting μ = −10.0 gives data rate between 45 Mbps to 52 Mbps resulting in a 
stable eMBB transmission.
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Simulation Results

2. Convergence analysis of the PGACL algorithm 
and URLLC reliability analysis.

Figure 7: CCDF of the outage probability.

62

PGACL algorithm minimizes the tail-risk of the URLLC outage probability

A violation probability around 0.18 when setting reliability threshold = 0.04

Incurring a worse performance at the beginning when 
initializing it with a random data and improves over time. 
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Simulation Results

3. eMBB performance analysis:

63

URLLC Arrival Rate (packets/time slot)
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Conclusion
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• Deep Neural Networks are envisioned to fill this gap and serve as key 
predicting enabler to support the 5G networks

• Network Management coupled with AI will be defining the future of 
wireless networks  

Challenges

• AI-Enhanced Optimization in More Complex Admission Control Scenario 

• Cooperative Game with Distributed Learning 

Conclusion 65
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Thanks !!!
Q & A
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